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Abstract. We study here the acoustic properties of a layered medium with randomly distributed 
layer thicknesses. The propagation of transverse elastic waves with polarization in the direction 
panllel to the laminations is investigated. The bulk modes and the "ission coefficients 
in a finite smple  arc calculated by the use of the transfer-mauix method. It is found that the 
density of states of these modes is drastically afiected by the extent of disorder of such a system. 
Owing to the randomness, most of the waves are localized in Ihe direction perpendicular to the 
laminations, but there still wist some waves with specizl frequencies which are completely 
extended. In some special cases we can analytically determine the frequencies of these extended 
waves. On the basis of this calculation a possible application of such srmctwes is suggested. 

1. Introduction 

There has been a great deal of interest in recent years in the study of various vibrational 
modes supported by heterostructures and multilayered structures or superlattices. From 
theoretical investigations 11-51, it is believed that the periodic alternation of layers of 
materials with different acoustic properties in a superlattice has essential effects on the 
propagation of acoustic phonons in the direction perpendicular to the layers ( x ,  direction). 
Owing to the artificial periodicity, the dispersion relation of acoustic waves propagating 
along X I  is folded into mini Brillouin zones of the superlattice, and frequency gaps open up 
at their centres or boundaries. Experimental investigations of the spectra of possible acoustic 
modes in various superlattices made of metals, semiconductors or amorphous materials 
have shown fairly good agreement with the theory [&lo]. In recent years, the artificially 
constructed aperiodic layered structures have also amacted much attention in investigations. 
These include the quasi-periodic systems and the systems with randomly distributed layer 
thicknesses. In such systems, crystalline periodicity remains in directions parallel to the 
laminations, but one-dimensional (ID) quasi-periodicity or randomness appears in the growth 
direction. For a given wavevector component parallel to the layers, the propagation of waves 
along the perpendicular direction is just like the motion in a ID aperiodic system. It is found 
that the electronic states in a ID quasi-periodic system have exotic Cantor-set-like features 
[Ill. At the same time, in a- ID disordered system, most of the states are localized, as 
indicated by the scaling theory 1121, but for special disorder types there still exist a small 
number of extended states [13,14]. 
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The random-thickness layered structure provides another possibility for producing new 
devices. The acoustic properties can be artificially tailored by controlling the randomness of 
the thicknesses or doping profiles. The presence of randomness in such systems necessarily 
results in lattice vibrations totally different from those in bulk crystals or in periodic 
superlattices. At the same time, one may expect that some particular extended modes 
of acoustic phonons can also be found in special ID disordered systems; meanwhile the 
other modes are drastically damped out owing to the randomness. So it is possible to 
develop high-quality acoustic filters by use of a layered structure with a specially designed 
thickness randomness. 

In the present paper, we study the acoustic properties of the system which is formed 
by alternative stacking of layers of two materials with different acoustic parameters, and 
the layer thicknesses are randomly distributed. The phononic spectra of bulk modes and 
the transmission coefficients of the transverse waves are calculated for finite samples with 
different extents of randomness by use of the transfer-matfix method. It is found that the 
density of states is drastically affected by the disorder. Owing to the randomness, most of 
the waves are localized in the growth direction, but, for special forms of disorder, there 
still exist some waves with particular frequencies which are completely extended. We shall 
analytically determine the frequencies of these extended waves and qualitatively discuss the 
possible applications. 

The paper is organized as follows. In section 2 we describe the structural features of 
the system and illustrate the expression of the transfer-matrix method in the continuum 
approximation which is used in the calculation. In section 3 we give the result of 
the phononic spectrum for different degrees of disorder. In section 4, we calculate the 
transmission of the transverse waves through such a layered structure, prove that for special 
forms of disorder there exist completely extended waves and analytically determine their 
frequencies. Our conclusions are summarized and discussed in section 5. 

2. Propagation of acoustic waves in a superlattice with randomly distributed layer 
thicknesses 

The system considered here is a superlattice made from alternating deposition of layers of 
two different materials A and E. The thicknesses of the layers are randomly distributed. 
This means that the thickness of a particular layer is a random variable. We denote P A ( ~ A )  
and P B ( ~ B )  as the stochastic functions describing the distributions of thicknesses of layers 
of species A and layers of species E, respectively. The form and extent of the disorder 
are completely controlled by these functions. In the present paper we consider a uniform 
continuous distribution 

where is the average layer thickness of species A@) and SA(B) is the width of the 
random distribution. Here the subscript A or B indicates .the species of the layer. The 
thicknesses of the layers of the system that we consider are sequentially generated from 
a random-number generator in a computer according to this distribution. As soon as the 
sample is generated, the calculation is carried out upon this structure. 

For the propagation of transverse acoustic waves, the elastic properties of a layer A (E) 
are described by two parameters: the density PA@) and the transverse sound velocity c : ( ~ ) .  
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We assume that the layers are perpendicular to the x1 direction, and the displacement of 
the transverse elastic waves is in the x z  direction, parallel to the plane of the layers; so the 
propagation of the transverse waves is in the X I - X ~  plane. The elastic equation of motion 
within a layer may be written as 

i i h .  x 3 ,  I) = (c;ml)2(a2/ax; + az/ax:)u(xl,  x3, t )  (2) 

where U(XI, x3, t )  is the displacement at position ( X I ,  x3) and time I, and CL@, is the velocity 
of transverse acoustic waves in material A (B). Thus the general solution of the equation 
can be written as 

~(xI,x~,z) = exp[i(k3~3 - 4 l ~ ( x 1 )  (3) 

with 

u ( q )  = Ai sin[ai(xl -x11)1 + Bi cos[ai(xl - xli)] 

where the position x1 is in the ith layer, xli is the coordinate of the interface between the 
ith layer and the (i - 1)th layer, k3 is the component of wavevector in the x3 direction, and 

ai = [(U/C,!)’ - k;]lf2. 

Here ci equals cL when the species in the ith layer is A and equals ck when the species in 
the ith layer is B; o is the frequency of the acoustic mode. 

The continuities of the displacement and the stress at interface xl,i+l yield 

Ai sin(aili) + Bi cos(aili) = Bit1 (4) 

and 

F [ A i  cos(aili) - Bi sin(ailj)] = Ai+l (5) 

with 

F = aipi (ci‘)’/ai+lpi+I (4+i  )’ (6) 

where pi and li are the density and thickness, respectively, of the ith layer. At the same 
time, at interface xl,iC2, the requirement of the continuities gives 

Bit2 = Ai+] sin(ai+lli+t) + Bit1 cos (a i+ th )  (7) 

and 

FAit2 = Ai,] cos(ai+~li+d - &+I sin(ai+lli+l). (8) 

Equations (4), (5), (7) and (8) can be rewritten in the Wansfer-matrix form 
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where Ti is a 2 x 2 mamx: 
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sin(aili) cos(a~1i) (10) 
cos(ai+lli+l)/F - sin(ai+lli+1)/F] [ F cos(ai1i) - F  sin(ai1i) 

sin(ai+ I l i+ l )  cos(ai+lli+l) 
Ti = 

As the layers of species A and B are alternatively deposited, the ith layer and the (i +2)th 
layer are of the same species; so matrix Ti is a unimodular matrix. We consider a finite 
system with 2 N  layers, and its (2N)th layer is connected to a medium of the same species as 
the first layer. The amplitudes of the wave at the first layer and at this medium ( (2N + 1)th 
layer) are related by 

where 

From this equation we can obtain the phonon spectrum by use of the boundary conditions 
at the ends and calculate the acoustic wave at a special eigenfrequency and the transmission 
through the whole system. 

3. Spectrum of bulk modes of acoustic phouous for finite samples with different degrees 
of disorder 

The randomness of the layer thicknesses breaks the periodicity in the growth direction; so 
the Bloch theorem cannot be employed in the calculation of the spectrum of the phonons. 
Owing to this difficulty we have to restrict ourselves to a system containing only a finite 
number 2N of layers. Some modes in an infinite system are lost owing to this truncation 
because of the disappearance of the long-range structures which are longer than the length 
of the finite system. On the other hand, some new modes are created by the truncation; 
these are the modes associated with the two surfaces of the finite system and depending on 
how we deal with the boundary conditions. In fact, we are not interested in these surface 
modes; so we look for frequencies where corresponding solutions do not grow exponentially 
and can be regarded as the 'bulk modes' of the finite system. This leads to a condition 
that the ratio between the amplitudes at the two surfaces is finite. Alternatively, in a more 
restricted version, similar to the standard procedure employed in the investigations of the 
quasi-periodic systems [15,16], we impose a Bloch ansatz on the amplitudes at the two 
surfaces: 

where k is the Bloch index reEecting this periodic boundary condition, and 

i=1 
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is the total length of the finite system. From equation (11) we have 
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The existence of non-trivial solutions of these linear equations for A I  and B I ,  together with 
the fact that TWd is a unimodular 2 x 2 matrix, leads to 

x = TrcT,a) = cos(kl) (13) 

1x1 < 1 .  (14) 

or 

As x depends on a frequency, from this equation we can obtain the spectrum of the 
acoustic modes of the system. The result is a set of minibands of frequencies which 
meet condition (14). Such a miniband structure comes from the imposed Bloch ansafz, and 
their widths are reduced to zero at the limit N -+ M. lo the calculation of the spectrum, 
we employ a finite sample with N large enough that the widths of the minibands are of the 
same order as the frequency resolution in the figures and take a miniband as a phononic 
state with frequency at its centre; thus the number of states in a given frequency interval 
can be accumulated to obtain a density of states as a function of frequency. The calculated 
results for a sample with a small degree of randomness, for a sample with a large degree of 
randomness and for a sample without randomness are shown in figures l(a), l(b) a id  l(c), 
respectively. All the samples have the same average layer thickness (IO00 A) and the same 
total number of layers (N = 200). As a comparison, the density of states for the ordered 
sample (figure l(c)) is calculated by the above-mentioned method, without applying the 
periodic symmetry. The values of the density and sound velocity for s h i e s  A and B used 
in the calculation are given in table 1 .  These parameters are appropriate for a Nb/Cu layered 
structure. From the figures we can see that the band strncture of the ordered sample shown 
in figure l(c) is broken by the introduction of the randomness; some modes in the bands 
disappear and some new modes emerge in the gaps. Such an effect is more apparent in 
the high-frequency range. There are some remnants of band structure at low frequencies in 
figures I(a) and I@). When the degree of randomness increases, the spectrum is resolved 
into a more discrete structure. 

Table 1. Values of p and cf for A and B. 

p (g cm-9 e' (105 cm s-') 

A 8.57 1.83 
B 8.92 2905 

Other boundary conditions can be used for the two surfaces of the finite system. For 

(15) 

example, we can assume that the surfaces are free of the stress. Then, 

A I  = AZN COS(O~ZN~ZN) - Bw sin(a2NZzN) = 0. 

This means that 



8854 Hang Dong and Shijie Xiong 

Figure 1. The spectra (densities of states (DOSS)) of 
transve~se elastic waves with k3 = 0 in a random 
superlanice. where the mndomnesses of the samples 
are as follows. (a )  The layer thicknesses of Nb and 
Cu are both uniformly distributed between 750 and 
1250 A. (b)  The layer thicknesses of Nb and Cu are 
bothuniformlydistributedbtween ZOand 1750 A. 
(c) Ail the layer thicknesses are regular and equal 
to 1oMl A, 

From equation (1 1) and the condition of existence of non-trivial solutions, we have 

[K0~1l lZ = 0. (17) 
The frequencies of the allowed modes can be solved by this equation. These include the 
surface modes which have not been considered above, and the bulk modes which lead to a 
finite ratio of E1 to B ~ N + ] .  If we restrict the module of this ratio to unity, the bulk modes 
obtained are just levels within the respective minibands obtained from the Bloch ansae. At 
the limit N + CO, the influence of the surfaces is eliminated, and there is no difference 
between the results obtained from different boundary conditions. 

4. Transmissions 

In the propagation of the acoustic waves in such a random superlattice, the amplitudes of 
the waves are spatially varying in the growth direction. It is interesting to investigate the 
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spatial distribution of the amplitudes. In particular, the information about the transmission 
of the waves through a system with a finite number of layers may be useful for possible 
application. We consider the abovementioned system inserted into a bulk material of 
species C and assume that the wavevector of the incident wave is in the X I - X ~  plane and 
the polarization of the wave is still in the xz direction. We write the function u(x1) in the 
left- and right-hand parts of the bulk material as 

where XIO and  XI,^ are the coordinates of left- and right-hand ends, respectively, of 
the random superlattice and klo is the component of the wavevector in the direction 
perpendicular to the laminations. The function &I) within the sample is still expressed by 
equation (3). Since the frequency o and the component of wavevector k3 are the same for 
the vibrations within and outside the sample, we have 

kio = - GI1’’ (19) 

where ck is the sound velocity in medium C. From the continuities of the displacement and 
the stress at the ends, we have 

A1 = i(l - r)FI (20) 

B 1 = l + r  (21) 

[ A Z N  C O S ( ~ Z N ~ N )  - BZN s in (az~h~) IFz  = it (22) 

AZN sin(azdzx) + BZN cos(0r~h.h~) = f (23) 

Fl = acPc(c;)2/~*P*(cA)2 Fz = aepB(c~)Z/acPc(c;)2.  (24) 

where 

From equations (7)4l l ) ,  we have 

AZN C O S ( ~ Z ~ Z N )  - BZN sin(azdzN) - F 0 I ] T ~ o ~ [ t : ] .  (25) II AZN sin(azdz,v) + BZN C O S ( % V ~ Z N )  

By the use of equations (20)-(25), we obtain 

r = VIZ + TZIF: + ~FI(ZI  - T Z Z ) I / [ G I ~ ~  - TIZ + ~ F ~ ( T H  + TZZ)I 
and 

(26) 

f = (FITzI(FI - ~)(TII +TU) + i[2F1 + ZZTZI(F~ - ~)II/[TZIF? - T I Z + ~ F I ( Z I  + rZdl 
(27) 

where cj(i, j = 1,2) is the element of the matrix Tmtd. So the transmission coefficient of 
the wave through the random superlattice is 
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It depends on the frequency and the component of wavevector k3. For simplicity, hereafter 
we assume that medium C is of species A. So Fl = 1, and 

(29) 

Owing to the randomness in the superlattice, the transmissions for most of the waves 
vanish provided that the number of the layers is sufficiently large. However, it can be proved 
that for some special types of disorder there still exist waves which have a transmission of 
unity. An example is superlattices with randomly distributed thicknesses of species A but 
regular thickness of species B, i.e. 

Hang Dong and Shijie Xiong 

If[’ = 4/[(?1 + T d a f  (Tzi - Ttd21. 

8A # o  8B =o. (30) 

LXB~B = mir (31) 

If the frequency of a mode satisfies 

with m being an integer, the transfer matrices Ti in equation (IO) become 

This means that the matrix string T t O ~  is the same as the transfer matrix of a uniform 
medium A with thickness 

except for a possible negative sign. Since the system is embedded in an infinite medium of 
species A, the transmission for these waves is unity. At the same time, the other waves are 
heavily scattered by the randomness and have a nearly vanishing transmission. In figure 2 
we plotted the transmissions as functions of frequencies for samples with different layer 
numbers. The peaks with a magnitude of unity correspond to these unscattered waves. It 
can be seen that the peaks rapidly become sharper when the layer number increases. Such 
a property can be used in an acoustic filter. 

Now we consider another structure which has sharper peaks. It is a random superlattice 
with the following thickness distribution: 

[:/MAW 
(0) (I) 

(34) if IAP) = lAP, + miAe,, m = I ,  2, . . . , MA(B) 
otherwise. 

pA(B)(lA(B)) = 

If the frequency w of a wave satisfies 

aAi$!) = m l n  

~ l t )  = mzir 

(35) 

(36) 

where m i  and m2 are integers, and w is in the range ( ;pectrum of a periodic superlattice 
with regular layer thicknesses if) and fro), in a similar way we can prove that this wave 
is completely unscattered. In this case, the frequenc should satisfy three conditions 

frequency. In figure 3 we plot the transmission as a function of frequency for such a system. 
It can be seen that the peaks in this curve are much sharper than those in figure 2(a), although 
the systems have the same layer number. 

simultaneously; so we can choose appropriate values of lqm, (a; and 12/B) to select the necessary 
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Figure 2 The transmission as a function of the frequency for acoustic waves with k3 = 0 through 
a sample with Kxed layer thickness dI of Nb equal to 500 A and random layer +ichiclmeses dz 
of Cu. uniformly diseibuted between 1OlM A and 10’ A. The sample is embedded in an infinite 
uniform medium of Nb. The total numbers of layers in the sample are as follows: (a) 200; (b) 
50. 

Figure 3. The transmission as a function of the frequency for awustic waves wilh g = 0 
through a sample wilh Nb layer thichesses di = 850 A +m1260 A and Cu layer thicknesses 
dz = (n + 1)lOOO A, where m and n am both random integers, uniformly distributed between 0 
and 100. The sample is embedded in an inhit? uniform medium of Nb. The total number of 
layers in the sample is 200. 
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5. Discussion 

We have calculated the phononic spectrum and the transmission of superlattices with 
randomly distributed layer thicknesses. It is found that the structure of phonons with 
comparatively high frequencies is very sensitive to the extent of the randomness. In these 
systems, there are abundant parameters which can be used to tailor the properties of the 
material. The calculation of the transmission reveals the existence of a small number of 
waves which are completely unscattered by such a random structllre. This provides the 
possibility of using these structures in a high-quality filter. The frequencies and sharpness 
of the filter can be easily designed by selecting the type and extent of the randomness. The 
result obtained here may be useful for further studies, e.g. study of the electron-photon 
interaction, and study of Raman scattering and other optical properties. 
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